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Abstract 16 
Halocarbons contained in equipment such as air conditioners, fire extinguishers, and foams 17 
continue to be emitted after production has ceased.  These ‘banks’ within equipment and 18 
applications are thus potential sources of future emissions, and must be carefully accounted for 19 
in order to evaluate ongoing compliance with the Montreal Protocol.  Here, we build on a 20 
probabilistic Bayesian model, previously developed to quantify CFC-11, 12 and 113 banks and 21 
their emissions.  We extend this model to the suite of the major banked chemicals regulated 22 
under the Montreal Protocol (HCFC-22, HCFC-141b, and HCFC-142b, halon-1211, and halon-23 
1301, and CFC-114 and CFC-115) along with CFC-11, 12 and 113 in order to quantify a fuller 24 
range of ozone-depleting substance banks by chemical and equipment type.  We show that if 25 
atmospheric lifetime and prior assumptions are accurate, banks are very likely larger than 26 
previous international assessments suggest, and that production has been very likely higher than 27 
reported. We identify that banks of greatest climate-relevance, as determined by global warming 28 
potential weighting, are largely concentrated in CFC-11 foams and CFC-12 and HCFC-22 non-29 
hermetic refrigeration.  Halons, CFC-11, and 12 banks dominate the banks weighted by ozone 30 
depletion potential. Thus, we identify and quantify the uncertainties in substantial banks whose 31 
future emissions will contribute to future global warming and delay ozone hole recovery if left 32 
unrecovered.  33 
 34 
1. Introduction 35 
 36 
The Montreal Protocol regulates the production of ozone-depleting substances (ODPs), and its 37 
implementation has avoided a world with catastrophic ozone depletion (Newman et al., 2009).  38 
Globally, there has been a near-cessation of chlorofluorocarbon (CFC) and halon production 39 
since 2010, and global production of the replacement hydrochlorofluorocarbons (HCFCs), are 40 
scheduled to be phased-out by 2030.  Despite production phase-out, these chemicals persist in 41 
old equipment produced prior to phase-out, such as refrigeration, air conditioners, foams, and 42 
fire extinguishers.  These reservoirs of materials (termed ‘banks’) continue to be sources of 43 
emissions (e.g., WMO, 2018).  Previously published estimates of bank sizes and bank emissions 44 
vary widely due to different estimation techniques that incorporate incomplete or imprecise 45 
information (TEAP, 2009; WMO, 2003).  This uncertainty obscures ongoing emissions 46 
attribution and undermines international efforts to evaluate global compliance with the Montreal 47 
Protocol.  In earlier work, we developed a Bayesian probabilistic banks model for CFCs that 48 
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incorporates the widest range of constraints to date (Lickley et al., 2020, 2021).  Here, we extend 49 
this model to the suite of major chemicals regulated by the Protocol that are subject to banking.   50 

 Previously published assessments typically rely on one of three modeling approaches to 51 
estimate bank sizes and to then estimate emissions associated with these banks.  In the “top-52 
down” approach  (e.g. WMO, 2003), banks are estimated as the cumulative difference between 53 
reported production and observationally-derived emissions.  However, by taking the cumulative 54 
sum of a small difference between two large values, small biases in emissions or production 55 
estimates can propagate into large biases in bank estimates (Velders & Daniel, 2014).  Some type 56 
of bias is thus expected since production has very likely been under-reported to some extent (e.g. 57 
Gamlen et al., 1986; Montzka et al., 2018), and emissions estimates rely on observed 58 
concentrations along with global lifetime estimates, which have large uncertainties associated 59 
with them (SPARC, 2013).  60 

The second approach relies on a “bottom-up” accounting method (Ashford et al., 2004; 61 
IPCC/TEAP, 2006), where the inventory of sales by equipment type are carefully tallied along 62 
with estimated release rates by application use. The bottom-up approach also relies on sales data 63 
from surveys of various equipment types and products as well as estimates of their respective 64 
leakage rates (SROC, 2005). These are all subject to uncertainties, which contributes to 65 
uncertainties in bottom-up bank estimates as well.  A limitation of the bottom-up method is that 66 
observed atmospheric concentrations are used only as a qualitative check and are not explicitly 67 
accounted for in the analysis. Another important limitation is that data used in the bottom-up 68 
accounting method are unobserved but rather reported, such as production or sales of equipment, 69 
thus bias in reporting could propagate into large biases in bank estimates.  70 

The third approach, and the one used in more recent ozone assessments (WMO, 2011, 2014, 71 
2018) uses a hybrid approach to calculate banks.  Bottom-up banks estimated for 2008 are used 72 
as the starting point of the calculations. These banks are taken from SROC (2006) and represent 73 
interpolated values from the 2002 and 2015 estimates. The banks are then brought forward to the 74 
present time by adding the cumulate reported production and subtracting the cumulative 75 
emission from 2008 through the present. This approach is consistent with 2008 bottom-up bank 76 
estimates by design, however, as time between 2008 and the present has grown, the cumulative 77 
errors associated with the top-down approach have become larger. 78 

The modeling approach applied in the present study relies on Bayesian inference of 79 
banks(Lickley et al., 2020, 2021) where banks are estimated using an approach called Bayesian 80 
parameter estimation.  In this approach a simulation model of the bottom-up method is 81 
developed, where prior distributions of input parameters are constructed from previously 82 
published values, accounting for large uncertainties in production and bank release rates.  The 83 
simulation model simultaneously models banks, emissions, and atmospheric concentrations.  84 
Parameters in the simulation model are then conditioned (or updated) on observed concentrations 85 
by applying Bayes’ theory.  The final result is a posterior distribution of banks by chemical and 86 
equipment type, along with an updated estimate of production and release rates for each 87 
equipment type.  This approach incorporates data and assumptions from both the bottom-up and 88 
top-down approaches, providing a simulation model consistent with the bottom-up accounting 89 
approach while also being consistent with observed concentrations within their uncertainties.  90 

The remainder of the paper includes the following:  Section 2 presents the Bayesian modeling 91 
approach along with data used in the analysis.  Section 3 provides a summary of the results of 92 
our analysis for each of the chemicals considered here.  Finally, Section 4 provides a discussion 93 
of our primary findings and limitations of the analysis.  94 

 95 
2. Methods 96 
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 97 
The Bayesian modeling approach from Lickley et al. (2020, 2021) draws on a Bayesian analysis 98 
approach called Bayesian melding, designed by Poole & Raftery (2000), that allows us to apply 99 
inference to a deterministic simulation model.  We employ a version of this method that we 100 
henceforth refer to as Bayesian Parameter Estimation (BPE), which allows for input parameter 101 
uncertainty (Bates et al., 2003; Hong et al., 2005).  The model flow is implemented as follows; 102 
first we develop a deterministic simulation model, representing the “bottom-up” accounting 103 
method that simultaneously simulates banks, emissions, and mole fractions for each chemical 104 
and equipment type.  In this analysis, the chemicals considered include CFC-11, 12, 113, 114, 105 
and 115, HCFC-22, 141b, and 142b, and halon-1201, and 1311.  Prior distributions for each of 106 
the input parameters are based on previously published estimates.  We then specify the 107 
likelihood function as a function of the difference between observed and simulated mole 108 
fractions.  Finally, we estimate posterior distributions of both the input and output parameters by 109 
implementing Bayes’ Rule using a sampling procedure.  Each of the steps of the BPE are 110 
described in more detail below.   111 
 112 
2.1 Simulation Model    113 
The simulation model is comprised of equations (1) – (5) which simultaneously models banks, 114 
emissions, and mole fractions for each chemical by equipment type for all years with available 115 
data up until 2019.  Starting dates differ by chemical, see the Supplement for details. The 116 
simulation model is specified as follows;  117 
 118 
𝐵	#,%&' = )1 − 𝑅𝐹#,%. × 𝐵#,% + (1 − 𝐷𝐸#,%) × 𝑃#,%       (1) 119 
 120 
where 𝐵	#,%,		is banks and 𝑃#,% is production of equipment category, j, in year, t.  𝑅𝐹#,% reflects the 121 
fraction of the bank released and 𝐷𝐸#,% reflects the fraction of production that is directly emitted 122 
in equipment category, j, year, t. These same parameters are used to simulate emissions, 𝐸#,%:  123 
 124 
𝐸#,%&' = 𝑅𝐹#,% × 𝐵#,% + 𝐷𝐸#,% × 𝑃#,%	         (2) 125 

 126 
Total banks, 𝐵78%9:,%,  and total emissions, 𝐸78%9:,%,	are then estimated as the sum across all N 127 
equipment categories;  128 
 129 
𝐵78%9:,% = ∑ 𝐵#,%<

#='            (3) 130 
 131 

𝐸78%9:,% = ∑ 𝐸#,%<
#='           (4) 132 

 133 
For chemicals where feedstock usage is reported, an additional term in eq (4) is included that 134 
accounts for feedstock emissions.  Emissions are then used to simulate atmospheric mole 135 
fractions, 𝑀𝐹%, along with an assumed atmospheric lifetime, 𝜏%, taken as the SPARC (2013) 136 
multi-model time-varying mean;  137 

 138 
𝑀𝐹%&' = exp CD'

E!
F × 𝑀𝐹% + 𝐴 × 𝐸78%9:,%        (5) 139 

 140 
where A is a constant that converts units of emissions to units of mole fractions.  141 
 142 
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 143 
2.2 Prior Distributions 144 
Prior distributions for each of the input parameters in the simulation model described above are 145 
developed to estimate mole fractions, emissions, and banks for CFC-11, 12, 113, 114, and 115, 146 
HCFC-22, 141b, and 142b, and halon-1201, and 1311.  Categories of bank equipment are 147 
defined by the categorization provided by AFEAS (2001), which varies by compound (shown in 148 
Table 1).  For halons, there is a single category of bank (fire extinguishers).   149 

AFEAS data reports global annual production up to 2001 categorized by equipment type, 150 
which is generally categorized into short, medium and long-term banks.  We use AFEAS data 151 
and categorization to develop our production priors and adopt the WMO (2003) correction where 152 
AFEAS production values are used up until 1989 and then scaled to match UNEP global 153 
production values for all years following 1989.  After AFEAS data ends, we assume the relative 154 
production in each category remains constant for all years following 2001. Uncertainty in 155 
production priors is assumed to follow a multivariate log-normal distribution, where temporal 156 
correlation in production reporting bias is estimated in the BPE.  Prior distributions differ by 157 
chemical and are developed to be wide enough for atmospheric mole fraction priors to contain 158 
observations.  See the Supplement for details on production priors for each chemical.   159 

The emissions function by bank equipment type can be characterized by the fraction of 160 
production that is directly emitted during the year of production (DE) and the fraction of the 161 
bank that is emitted in each subsequent year.  Prior estimates for emissions functions come from 162 
previously reported data and differ by chemical and equipment type (see the Supplement).  163 
Broadly speaking, it has been estimated that chemicals contained in short-term banks are fully 164 
emitted within the first two years after production, medium-term banks lose about 10 – 20% of 165 
their material each year, and long-term banks can lose as little as 2% of their material each year 166 
(Ashford et al., 2004).  We use previously published estimates to develop emissions function 167 
priors specific to each chemical and bank type along with wide uncertainties, as specified in the 168 
Supplement.  169 

Amounts of halocarbons used for feedstock production are available annually 170 
(UNEP/TEAP, 2021). A prior mean leakage rate of 2% was assumed during production, which 171 
reflects a medium value between different facilities (MCTOC, 2019). 172 

    173 
Table 1: Application type of halocarbon banks by chemical 174 
Chemical Short Bank Medium Bank Long Bank 
CFC-11 Aerosols  

Open-cell foam 
Non-hermetic refrigeration Closed-cell foam 

CFC-12 Aerosols  
Open-cell foam 

Non-hermetic refrigeration Refrigeration 

CFC-113 solvents  Heat pump 
CFC-114   Heat pump 
CFC-115 Propellant  Air conditioning 
HCFC-22 Open-cell foam Non-hermetic refrigeration Foam 
HCFC-141b Open-cell foam Non-hermetic refrigeration Foam 
HCFC-142b  Non-hermetic refrigeration Foam 
Halon-1211  Fire extinguishers  
Halon-1301  Fire extinguishers  

 175 
 176 
2.3 Likelihood function 177 
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For each chemical, the likelihood function is a multivariate normal likelihood function of the 178 
difference between modeled and observed mole fractions;  179 
 180 
𝑃(𝐷%', …𝐷%<|𝜽) =

'

(KL)
"
#M|N|

exp	 O− '
K
Δ7𝑆D'ΔR       (6) 181 

 182 
Where 𝐷%', …𝐷%< is yearly globally-averaged observed mole fractions for all years where 183 
observations are available and 𝜽 represents that vector of input and output parameters from the 184 
simulation model.  Δ is an N x 1 vector of the difference between yearly observed and modeled 185 
mole fractions and is assumed to have a mean zero, and covariance function 𝑆.   𝑆 therefore 186 
represents the sum of uncertainties between observed and modeled mole fractions.  While there 187 
are published estimates of uncertainties in observed mole fractions, the uncertainties in modeled 188 
mole fractions do not, therefore, we estimate 𝑆 separately for each chemical, as is done in 189 
(Lickley et al., 2020).  The off-diagonals in the covariance function incorporate a correlation 190 
term, which accounts for our assumption that there is high correlation in the bias between 191 
modeled and observed mole fractions.  Correlation terms for each chemical are reported in the 192 
Supplement along with prior estimates of the uncertainty parameters used for diagonal elements 193 
in 𝑆.  Observations come from the Advanced Global Atmospheric Gas Experiment (AGAGE; 194 
https://agage.mit.edu) data set (Prinn et al., 2000; Prinn et al., 2018), with the exception of CFC-195 
11 and 12 which, following Lickley et al. (2021), come from the AGAGE and NOAA merged 196 
data sets (Engel et al., 2019).  Data are aggregated into annual global mean mole fractions. The 197 
time frame of availability of observations differs by chemical (see the Supplement).   198 
 199 
2.4 Posterior Distributions 200 
Following Bayes’ Rule, we specify our posterior distribution as;  201 
 202 
𝑃(𝜽|𝐷%', … , 𝐷%<) =

S(𝜽)S(T!$,…T!"|𝜽)
S(T!$,…T!")

         (7) 203 
 204 
Where 𝑃(𝜽) represents the joint prior distribution of the input and output parameters described 205 
in the simulation model in Section 2.1.    206 
 207 
The analytical form of the posterior distribution is intractable. Thus, we estimate the posterior 208 
using a sampling procedure (the sampling importance resampling (SIR) method) to estimate the 209 
marginal posterior distributions (Bates et al., 2003; Hong et al., 2005; Rubin, 1988).  To 210 
implement SIR we draw 1,000,000 samples from the priors, run the simulation model, and then 211 
resample from the priors 100,000 times using an importance ratio, which is proportional to the 212 
likelihood function.  These sample sizes were chosen such that multiple iterations of the model 213 
produce consistent results.   214 
 215 
3. Results 216 
Figure 1 shows observed globally averaged mole fractions compared to BPE estimated mole 217 
fractions for each chemical. Figure 2 shows BPE estimated and observationally-derived 218 
emissions, assuming the SPARC time-varying multi-model mean lifetime for each species.  219 
Posterior estimates agree well with observations for the majority of time periods and chemicals.  220 
Note, however, that BPE estimates from Lickley et al. (2021) match observed and 221 
observationally-derived estimates more closely for CFC-11 than they do in the present analysis.  222 
We attribute this difference in consistency to atmospheric lifetimes being assumed in the present 223 
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analysis, whereas they were inferred in Lickley et al. (2021), which found inferred lifetimes to be 224 
somewhat shorter than the SPARC multi-model mean values.  Shorter lifetimes would allow 225 
modeled mole fractions to decline more quickly following 1990, better matching observations. A 226 
notable discrepancy occurs for CFC-115, where modeled mole fractions are increasing 227 
throughout the entire simulation period, whereas observed mole fractions from 2000 onwards are 228 
relatively constant.  This discrepancy could be explained by the large uncertainties in 229 
atmospheric lifetimes of CFC-115 (Vollmer et al., 2018), if atmospheric lifetimes are in fact 230 
substantially shorter than the SPARC multi-model mean. 231 
 232 
Figure 3 provides a comparison of BPE bank estimates alongside previously published bank 233 
estimates.  BPE bank estimates are generally higher than other published values.  This can be 234 
explained by production uncertainties that are accounted for in the present analysis.  Our analysis 235 
suggests that production has very likely been underreported for nearly all chemicals.  Table 2 236 
provides a summary of our estimated bias in cumulative reported production throughout the 237 
simulation period for each chemical type.  With the exception of CFC-113 and CFC-115, we find 238 
our inferred cumulative production to be significantly higher than reported production (at the 1-239 
sigma level), with our median estimate suggesting that production was as little as 9% higher than 240 
reported for CFC-12 and as high as 50% higher than reported for Halon-1211.  We would expect 241 
any consistent bias in reported production to be a bias low, since consistent undercounting of 242 
production is more plausible than overcounting production.  The exception for this would be the 243 
base year, which reduction targets are made with reference to.  In this instance, we would expect 244 
overreporting for this year to be more likely.  245 
 246 
Table 2: Estimated bias in cumulative reported production.  Values indicate the percent 247 
difference between inferred cumulative production from the onset of production to 2019 relative 248 
to reported production, for all uses except for feedstock production.  Positive values indicate the 249 
percent by which inferred production is higher than reported.  250 

Chemical Name CFC-11 CFC-12 CFC-113 CFC-114 CFC-115 
Median inferred bias 
(16th , 84th percentile) 

12% 
(9%, 13%) 

9% 
(7%, 11%) 

-1% 
(-3%, 0%) 

11% 
(9%, 13%) 

-1% 
(-2%, 5%) 

Chemical Name HCFC-22 HCFC-141b HCFC-142b Halon-1211 Halon-1301 
Median inferred bias 
(16th , 84th percentile) 

10% 
6%, 13%) 

12% 
(6%, 19%) 

22% 
(17%, 28%) 

50% 
(41%, 59%) 

24% 
(18%, 32%) 

 251 
 252 
Figure 4 shows the breakdown of emissions by equipment type over time.  For CFCs, emissions 253 
from short-term banks tend to peak around 1990, as spray applications were banned earlier than 254 
other applications, after which emissions from medium and long-term banks become more 255 
dominant emission sources.  This is to be expected as the phase-out of production after 1990 256 
would lead to more CFC emissions from existing banks rather than new, short-lived equipment.  257 
For HCFC-22, most of the emission throughout the entire time period is from medium banks, 258 
which is largely non-hermetic refrigeration.  Long banks (i.e. foams) dominate emissions for 259 
HCFC-141b, and for HCFC-142b, where both foams and non-hermetic refrigeration are 260 
prominent emission sources throughout the simulation period.  Estimated feedstock emissions 261 
averaged over 2010 – 2019 are shown in Table 3.  HCFC-22 is the largest source of feedstock 262 
emissions by mass, but CFC-113 feedstock emissions are estimated to be larger when weighted 263 
by GWP100 and ODP.   264 
 265 
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Table 3: Estimated feedstock emissions averaged from 2010 – 2019 from the Bayesian analysis.  266 
Emissions are weighted by mass, global warming potential (GWP100) relative to CO2 over a 267 
100-year time horizon, and by ozone depletion potential (ODP)(WMO, 2018).   268 
Feedstock Emissions CFC-113 HCFC-22 HCFC-142b 
By mass 3.4 Gg/yr 9.3 Gg/yr 2.1 Gg/yr 
By GWP100 20, 838 Gg/yr 16,591 Gg/yr 4,302Gg/yr 
By ODP 2.8 Gg/yr 0.3 Gg/yr 0.1 Gg/yr 

 269 
Figure 5 shows the relative quantity of banked materials by chemical type.  Banks are weighted 270 
by mass (Figure 5a), by global warming potential (GWP100; Figure 5b), and by ozone depleting 271 
potential (ODP; Figure 5c).  Our best estimate is that the sum of the HCFCs currently comprise 272 
about 77% of banks by mass.  However, in terms of climate impacts, CFC-11, 12 and HCFC-22 273 
are the largest banked materials weighted by GWP100, accounting for 36%, 14%, and 36% of 274 
current banks, respectively.  When banks are weighted by ODP, CFC-11 and 12 represent 46% 275 
and halons also represent 46% of current banked chemicals.  276 
 277 
Figure 6 shows the composition of banks by chemical type.  This, together with Figure 5, 278 
provides insight into the most prominent banked sources of halocarbons with regards to 279 
GWP100 and ODP.  In terms of GWP100, CFC-11 banks largely reside in foams, whereas CFC-280 
12 and HCFC-22 are largely in non-hermetic refrigeration; the latter may be more readily 281 
recoverable.  In terms of ODP, CFC-11 foams and CFC-12 non-hermetic refrigeration remain 282 
important, along with halons which are all contained in fire extinguishers, a recoverable 283 
reservoir.   284 
 285 
 286 
4. Discussion and Conclusions  287 
This analysis suggests that if lifetime assumptions are correct, published bank estimates using 288 
either the top-down or bottom-up methods were likely underestimating bank sizes for all banked 289 
chemicals due to underreporting of production (see Table 2).  The Bayesian approach used in this 290 
analysis does not assume production is known, but rather jointly infers production along with the 291 
other parameters in the simulation model, providing probabilistic estimates of historical 292 
production values.  Previously published bank estimates (Ashford et al., 2004; TEAP, 2009; 293 
WMO, 2003) do not infer production, but rather assume it is known, or consider different 294 
scenarios.  We argue that production assumptions have been biased low due to underreporting 295 
and thus have led to published bank estimates that were also biased low.   296 
 297 
Discrepancies between observed mole fractions and BPE-derived mole fractions are notable for 298 
the suite of chemicals considered here.  While the majority fall within the 90% confidence 299 
interval throughout most of the time periods, the trends in concentrations between observations 300 
and inferred mole fractions do not always agree.  This discrepancy could be related to our 301 
partitioning of production type following 2003 (i.e. after AFEAS data ends).  Another important 302 
limitation in this analysis is in the treatment of atmospheric lifetimes, which could also explain 303 
some of these discrepancies.  The present analysis assumes atmospheric lifetimes are known and 304 
equal to the SPARC (2013) time varying multi-model mean lifetimes.  However, previous work 305 
has indicated potential biases in SPARC lifetimes, for example for CFCs (Lickley et al., 2021). 306 
The potential bias in atmospheric lifetimes would result in biased bank estimates in the present 307 
manuscript and requires further analysis.  308 
 309 
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There are important discrepancies between CFC-113 feedstock emissions inferred here and those 310 
estimated in the previous analysis (Lickley et al., 2020).  In Lickley et al. (2020), feedstock 311 
emissions were assumed to be the difference between observationally-derived emissions and 312 
inferred bank emissions.  In the present analysis, prior distributions of feedstock production and 313 
leakage rates are developed and feedstock emissions are then inferred.  In the present analysis, 314 
observationally-derived CFC-113 emissions are higher than total BPE inferred emissions at the 315 
1-sigma level from 2010 onwards.  This suggests that either observationally-derived emissions 316 
are too high, or our BPE estimates are too low.  In Lickley et al. (2021), we find that atmospheric 317 
lifetimes of CFC-113 are very likely lower than the SPARC multi-model time varying mean, 318 
used in the present analysis.  This would imply that the observationally-derived emissions shown 319 
in Figure 2 are biased low, suggesting an even larger discrepancy between BPE inferred total 320 
emissions and observationally derived emissions.  Therefore, it seems plausible that the 321 
discrepancy is due to prior feedstock emissions estimates being biased low due to larger leakage, 322 
or CFC-113 is being produced for a use that is not allowed under the Montreal Protocol.   323 
 324 
Finally, some important details about production and destruction were not fully accounted for in 325 
this analysis.  For one, feedstock priors were only included for CFC-113, HCFC-22, and HCFC-326 
142b, which could be limiting our assessment of the sources of emissions for other chemicals.  327 
However, published feedstock values for other chemicals are not available and leakage rates in 328 
feedstock applications may be uncertain.  Further, we do not consider end-of-life destruction of 329 
equipment as there are no published records, to our knowledge, of these processes.  Finally, we 330 
were not able to account for a more detailed breakdown in production by equipment type than 331 
what has been published by AFEAS, which discretizes production into, at most, four categories 332 
of equipment, and does not provide data beyond 2003.  Without publicly available details of 333 
these processes, modeling of banks and emissions will continue to be limited.  334 
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 442 
Figure 1: Modeled mole fractions versus observed mole fractions.  Red lines indicate the 443 
posterior median mole fraction estimate from the Bayesian analysis (BPE), with shaded regions 444 
indicating the 90% confidence interval.  Blue line indicates globally-averaged observed mole 445 
fractions.  446 
 447 

 448 
Figure 2: Modeled emissions versus observationally-derived emissions. Red lines indicate the 449 
posterior median emissions estimate from the Bayesian analysis (BPE), with shaded regions 450 
indicating the 90% confidence interval.  Blue line indicates observationally-derived emissions 451 
assuming the SPARC multi-model mean time-varying lifetimes.  452 
 453 
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 454 

 455 
Figure 3: Magnitudes of Bank estimates.  The red line indicates the median posterior estimate of 456 
Banks from the Bayesian analysis, with shading indicating the 90% confidence interval.  457 
Previously published bank estimates are provided for comparison from TEAP (2009), WMO 458 
(2007), and WMO (2018), along with the hybrid approach updated to current estimated starting 459 
values.  460 
   461 

 462 
Figure 4: Emissions by Source.  Emissions estimates by various equipment types, summarized 463 
in Table 1, are shown here along with estimated emissions from feedstock usage.  Lines indicate 464 
the median estimate, with the shaded region indicating the 90% confidence interval.  Halons are 465 
not included in this figure as 100% of halon emissions come from the same application and are 466 
thus identical to Figure 2 halon totals.   467 
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 468 
Figure 5:  Total banks by mass, global warming potential (GWP100; WMO, 2018) and ozone 469 
depleting potential (ODP; WMO, 2018).  Bank estimates reported in the above figures are the 470 
median estimates from the Bayesian analysis.   471 
 472 

 473 
Figure 6: Bank size by equipment type. Bank estimates reported in the above figures are the 474 
median estimates from the Bayesian analysis.  In the above legends, cc refers to closed-cell 475 
foams, non-h ref. refers to non-hermetic refrigeration, ref. refers to refrigeration, and A/C refers 476 
to air conditioning.  477 
 478 
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